3,571 research outputs found

    Fe-spin reorientation in PrFeAsO : Evidences from resistivity and specific heat studies

    Full text link
    We report the magnetic field dependence of resistivity (ρ\rho) and specific heat (CC) for the non-superconducting PrFeAsO compound. Our study shows a hitherto unobserved anomaly at TSRT_{SR} in the resistivity and specific heat data which arises as a result of the interplay of antiferromagnetic (AFM) Pr and Fe sublattices. Below the AFM transition temperature (TNPrT_N^{\rm{Pr}}), Pr moment orders along the crystallographic c axis and its effect on the iron subsystem causes a reorientation of the ordered inplane Fe moments in a direction out of the abab plane. Application of magnetic field introduces disorder in the AFM Pr sublattice, which, in turn, reduces the out-of-plane Pr-Fe exchange interaction responsible for Fe spin reorientation. Both in ρ\rho(TT) and d(C/T)/dTd(C/T)/dT curves, the peak at TSRT_{SR} broadens with the increase of HH due to the introduction of the disorder in the AFM Pr sublattice by magnetic field. In ρ\rho(TT) curve, the peak shifts towards lower temperature with HH and disappears above 6 T while in d(C/T)/dTd(C/T)/dT curve the peak remains visible up to 14 T. The broadening of the anomaly at TNPrT_N^{\rm{Pr}} in C(T)C(T) with increasing HH further confirms that magnetic field induces disorder in the AFM Pr sublattice.Comment: 8 pages, 10 Figure

    Quantm Magnetoresistance of the PrFeAsO oxypnictides

    Full text link
    We report the observation of an unusual BB dependence of transverse magnetoresistance (MR) in the PrFeAsO, one of the parent compound of pnictide superconductors. Below the spin density wave transition, MR is large, positive and increases with decreasing temperature. At low temperatures, MR increases linearly with BB up to 14 T. For TT\geq40 K, MR vs BB curve develops a weak curvature in the low-field region which indicates a crossover from BB linear to B2B^2 dependence as BB\rightarrow0. The BB linear MR originates from the Dirac cone states and has been explained by the quantum mechanical model proposed by Abrikosov.Comment: accepted for publication in Appl. Phys. Let

    Excess compressibility and excess volume studies in the binary mixtures of methyl and ethyl acetate in O-chlorophenol at different temperatures

    Get PDF
    Ultrasonic velocity and density measurements have been carried out in the binary mixtures of methyl acetate (MA) and ethyl acetate (EA) in O-chlorophenol (OCP) at 303.15, 308.15, 313.15, 318.15 and 323.15 K. From the experimental data, the excess thermodynamical parameters such as excess adiabatic compressibility (β), excess intermolecular free length (L) and excess molar volume (VE) have been calculated. The results have been interpreted in terms of intermolecular interactions leading to complex formation through the formation of hydrogen bonds between the component molecules of the mixture

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    Evaluating the LRFD Factor for Cold-formed Steel Compression Members

    Get PDF
    This paper summarizes recent work to determine if the LRFD resistance factor for cold-formed steel compression member s can be increased above its current value of φ c =0.85. An experimental database of 675 concentrically loaded columns with plain and lipped C-sections, plain and lipped Z-sections, hat sections and angle sections, including members with holes was compiled. The predicted strength of each specimen was calculated with the AISI-S100-07 Main Specification and Direct Strength Method (DSM). Test-to-predicted strength statistics were employed with the first order second moment reliability approach in AISI-S100-07 Chapter F to calculate the resistance factors. The observed trends demonstrate that DSM is a more accurate strength predictor than the current Main Specifica tion, especially for columns with partially effective cross sections. Serious consideration should be given to replacing the Main Specification with DSM, which would provide improved prediction accuracy and a viable rationale for increasing the resistance factor. The test-to-predicted strength ratios for columns with plain and lipped angle cross-sections exhibit a high coefficient of variation and b ecome increasingly conservative with increasing global slenderness. Fundamen tal research on the mechanics of angle compression members is needed to improve existing design methods

    Anomalous thermal expansion of Sb2_2Te3_3 topological insulator

    Full text link
    We have investigated the temperature dependence of the linear thermal expansion along the hexagonal c axis (ΔL\Delta L), in-plane resistivity (ρ\rho), and specific heat (CpC_p) of the topological insulator Sb2_2Te3_3 single crystal. ΔL\Delta L exhibits a clear anomaly in the temperature region 204-236 K. The coefficient of linear thermal expansion α\alpha decreases rapidly above 204 K, passes through a deep minimum at around 225 K and then increases abruptly in the region 225-236 K. α\alpha is negative in the interval 221-228 K. The temperature dependence of both α\alpha and CpC_p can be described well by the Debye model from 2 to 290 K, excluding the region around the anomaly in α\alpha
    corecore